
[18F]FS-DPA: Synthesis and evaluation in a rat stroke model.

Nils Walter, Jan Bertram, Birte Drewes, Heike Endepols, Boris D. Zlatopolskiy, Bernd Neumaier

Recently, an ultrafast 18 F/ 19 F isotopic exchange based on sulfur (VI) fluoride exchange (SuFEx) has been described. In the present work, the novel SuFEx radiolabeling was used to prepare a 18 F-labeled fluorosulfurylated DPA-714 (1) analogue ([18 F]FS-DPA ([18 F]**2**)). DPA-714 is a selective agonist at the translocator protein 18 kDa (TSPO), a biomarker with relevance for different neurodegenerative and psychiatric diseases, stroke and brain tumors. The corresponding radioligand [18 F]DPA-714 is widely used in preclinical and clinical TSPO PET studies. Consequently, the suitability of [18 F]FS-DPA for imaging of neuroinflammation was evaluated in a transient stroke rat model using [18 F]DPA-714 as a reference TSPO-specific PET tracer using μ PET.

2 (15 µg) was ¹⁸F-labeled in MeCN at 40 °C for 3 min. The resulting crude radiotracer was purified by solid phase extraction affording [¹⁸F]**2** in the ready-for-application form in 42±3% activity yield within 25 min. 3 adult Sprague Dawley rats underwent occlusion of the anterior cerebral artery (ACA). T2-weighted MRI was performed after 24 h to visualize the edema in the ACA territory, demarcating the area of subsequent neuroinflammation. After 4 weeks, rats were measured with the TSPO [¹⁸F]**1** (0-30 min p.i.) and with [¹⁸F]**2** (0-120 min p.i.) using µPET (Siemens Focus 220, **Fig 1**). Both tracers reliably visualized neuroinflammation in the ACA territory. Maximum uptake was SUV_{bw} 257 ± 43 for [¹⁸F]DPA-714 and SUV_{bw} 412 ± 82 for [¹⁸F]FS-DPA, 0-30 min p.a. After 2 h, SUV_{bw} of [¹⁸F]FS-DPA was still 260 ± 53. Signal-to-noise ratio (SNR) was 3.6 ± 1.3 for [¹⁸F]DPA-714, and 3.1 ± 0.5 for [¹⁸F]FS-DPA (0-30 min p.i.). SNR of [¹⁸F]FS-DPA increased over time and amounted to 3.8 ± 0.7 (90-120 min p.i.). Both [¹⁸F]DPA-714 and [¹⁸F]FS-DPA underwent fair defluorination with a bone SUV_{bw} of 229 ± 25 (90-120 min) for [¹⁸F]FS-DPA.

[¹⁸F]FS-DPA is a promising candidate for high-quality visualization of neuroinflammation. Easy accessibility and a very fast and simple preparation ([¹⁸F]**2**: 25 min *vs.* [¹⁸F]**1** 45 min^[5]) combined with excellent preclinical imaging properties justify further preclinical and, possibly, clinical studies with this tracer.

Figure 1. *In vivo* evaluation of [¹⁸F]FS-DPA ([¹⁸F]**2**) in a rat stroke model (n=3). Shown are individual summed images (30–60 min p.i.) of one rat with corresponding MRI (T2) in horizontal (**A–C**) and transverse (**E–G**) orientation. MRI (T2) at 24 h post-stroke showed edema in the ACA territory (arrowheads in A+E). PET images (C+G) were taken 31 days after stroke, the former edema is indicated by a red outline. The time-activity curve (**D**) showed a slow washout of [¹⁸F]FS-DPA from the inflammatory area, and a steadily increasing bone uptake.

- [2] B. Zinnhardt, et al., Eur. J. Nucl. Med. Mol. Imaging 2021, DOI 10.1007/s00259-021-05276-5.
- [3] E. L. Werry, F. M. Bright, M. Kassiou, in *Neurodegener. Dis. Biomarkers. Neuromethods, Vol* 173 (Eds.: P. V. Peplow, B. Martinez, T.A. Gennarelli), Humana Press, New York, NY, 2022, pp. 407–427.
- [4] L. J. De Picker, B. C. M. Haarman, *Eur. J. Nucl. Med. Mol. Imaging* **2021**, DOI 10.1007/s00259-021-05308-0.